

Mark Scheme (Results)

October 2024

Pearson Edexcel International Advanced Level In Chemistry (WCH15) Paper 01 Transition Metals and Organic Nitrogen Chemistry

## Section A

| Question<br>Number | Answer                                                                                                                                          | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1                  | The only correct answer is B ([Ar] 3d <sup>5</sup> 4s <sup>1</sup> )                                                                            | (1)  |
|                    | $m{A}$ is incorrect because it more stable for a 4s electron to occupy a 3d orbital to give a half-filled 3d subshell                           |      |
|                    | $m{C}$ is incorrect because this would result in repulsion from two electrons in the same 3d orbital                                            |      |
|                    | <b>D</b> is incorrect because the 4p orbitals are much higher in energy than either the 3d or the 4s orbitals which are occupied preferentially |      |

| Question<br>Number | Answer                                                                           | Mark |
|--------------------|----------------------------------------------------------------------------------|------|
| 2                  | The only correct answer is B (Ni <sup>2+</sup> )                                 | (1)  |
|                    | A is incorrect because all the 3d orbitals are fully occupied in this ion        |      |
|                    | C is incorrect because none of the 3d orbitals is occupied in this ion           |      |
|                    | <b>D</b> is incorrect because all the 3d orbitals are fully occupied in this ion |      |

| Question<br>Number | Answer                                                                                                         | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------|------|
| 3                  | The only correct answer is C (36.4 %)                                                                          | (1)  |
|                    | $m{A}$ is incorrect because this is the percentage of only one chlorine in the complex ion                     |      |
|                    | <b>B</b> is incorrect because this is the percentage of two chlorines in the compound and not the complex ion  |      |
|                    | <b>D</b> is incorrect because this is the total percentage of chlorine in the compound and not the complex ion |      |

| Question<br>Number | Answer                                                                                                | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------|------|
| <b>4(a)</b>        | The only correct answer is C (peroxodisulfate ions and iodide ions are both negatively charged)       | (1)  |
|                    | A is incorrect because peroxodisulfate ions are strong oxidising agents                               |      |
|                    | <b>B</b> is incorrect because iodide ions are strong reducing agents                                  |      |
|                    | <b>D</b> is incorrect because the stoichiometry of the reaction does not affect the activation energy |      |

| Question<br>Number | Answer                                                                                   | Mark |
|--------------------|------------------------------------------------------------------------------------------|------|
| <b>4(b)</b>        | The only correct answer is C (the iron(II) ions can be easily oxidised and then reduced) | (1)  |
|                    | $m{A}$ is incorrect because the iron(II) ions are not reduced to iron                    |      |
|                    | <b>B</b> is incorrect because iron(II) ions are a homogenous catalyst                    |      |
|                    | <b>D</b> is incorrect because the iron(II) ions are oxidised and not reduced             |      |

| Question<br>Number | Answer                                                                                 | Mark |
|--------------------|----------------------------------------------------------------------------------------|------|
| 5                  | The only correct answer is D (strong acid and strong alkali)                           | (1)  |
|                    | A is incorrect because chromium(III) hydroxide is insoluble in water                   |      |
|                    | <b>B</b> is incorrect because chromium(III) hydroxide also dissolves in strong alkalis |      |
|                    | C is incorrect because chromium(III) hydroxide also dissolves in strong acids          |      |

| Question<br>Number | Answer                                                                                    | Mark |
|--------------------|-------------------------------------------------------------------------------------------|------|
| 6(a)               | The only correct answer is A (95.1 %)                                                     | (1)  |
|                    | <b>B</b> is incorrect because this is the value from dividing the masses                  |      |
|                    | $oldsymbol{C}$ is incorrect because this is the value from dividing the two molar masses  |      |
|                    | <b>D</b> is incorrect because this is the value from using the masses the wrong way round |      |

| Question<br>Number | Answer                                                                                              | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------|------|
| 6(b)               | The only correct answer is C (the sample of 1-nitronaphthalene was damp)                            | (1)  |
|                    | $m{A}$ is incorrect because this would result in a yield below $100\%$                              |      |
|                    | <b>B</b> is incorrect because this is likely to give a yield below 100%                             |      |
|                    | <b>D</b> is incorrect because the presence of isomers would not result in a yield of more than 100% |      |

| Question<br>Number | Answer                                                                                                                          | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|------|
| 7(a)               | The only correct answer is A (NaNO <sub>2</sub> + HCl $\rightarrow$ HNO <sub>2</sub> + NaCl)                                    | (1)  |
|                    | <b>B</b> is incorrect because the equation shows the formation of nitric acid and not nitrous acid                              |      |
|                    | C is incorrect because nitrous acid is not formed from sodium nitrate and hydrochloric acid                                     |      |
|                    | <b>D</b> is incorrect because sodium and chlorine are not produced in the reaction between sodium nitrite and hydrochloric acid |      |

| Question<br>Number | Answer                                                                                                  | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------|------|
| 7(b)               | <b>†</b> ≡×:                                                                                            | (1)  |
|                    | The only correct answer is D ( )                                                                        |      |
|                    | A is incorrect because there should be a triple bond between the nitrogen atoms                         |      |
|                    | <b>B</b> is incorrect because there should be a triple bond between the nitrogen atoms                  |      |
|                    | $m{C}$ is incorrect because the positive charge is should be on the nitrogen bonded to the benzene ring |      |

| Question<br>Number | Answer                                                                                         | Mark |
|--------------------|------------------------------------------------------------------------------------------------|------|
| 7(c)               | The only correct answer is A ( NH <sub>2</sub> )                                               | (1)  |
|                    | <b>B</b> is incorrect because the phenol group would not be substituted in a coupling reaction |      |
|                    | $m{C}$ is incorrect because the amine group would not be substituted in a coupling reaction    |      |
|                    | <b>D</b> is incorrect because two diazonium ions do not couple together to make an azo dye     |      |

| Question<br>Number | Answer                                                                                                                                                                                | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 8(a)               | The only correct answer is D (2-amino-3-hydroxypropanoic acid)                                                                                                                        | (1)  |
|                    | A is incorrect because the longest consecutive chain of carbon atoms is three including the carboxy functional group which has priority in the name over the alcohol functional group |      |
|                    | <b>B</b> is incorrect because the longest consecutive chain of carbon atoms is three and the hydroxy group is not on carbon 1                                                         |      |
|                    | C is incorrect because the hydroxy group is on the third carbon of the chain                                                                                                          |      |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                        | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 8(b)               | The only correct answer is A ( OH )  B is incorrect because the alcohol group does not react with the sodium hydroxide  C is incorrect because the amine group will not be protonated in sodium hydroxide solution  D is incorrect because the alcohol group does not react with the sodium hydroxide and the amine group will not be protonated in sodium hydroxide solution | (1)  |

| Question<br>Number | Answer                                                                                                                                   |     |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 9                  | The only correct answer is B (62 %)                                                                                                      | (1) |
|                    | $m{A}$ is incorrect because this is the value calculated from an additional, incorrect hydrogen atom included on the propanone structure |     |
|                    | C is incorrect because this is the molar mass of phenol                                                                                  |     |
|                    | <b>D</b> is incorrect because this is the molar mass of phenol with an additional, incorrect hydrogen included                           |     |

| Question<br>Number | Answer                                                                                                                                                      |     |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| 10(a)              | The only correct answer is B (all have similar lengths)                                                                                                     | (1) |  |  |
|                    | A is incorrect because aromatic systems have similar carbon-carbon bond lengths                                                                             |     |  |  |
|                    | C is incorrect because aromatic systems have similar carbon-carbon bond lengths                                                                             |     |  |  |
|                    | <b>D</b> is incorrect because aromatic systems have an intermediate bond length between that of a carbon-carbon double bond and a carbon-carbon single bond |     |  |  |

| Question<br>Number | Answer                                                                                                 | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------|------|
| 10(b)              | The only correct answer is C (p orbitals)                                                              | (1)  |
|                    | $m{A}$ is incorrect because the $s$ orbitals are involved in the formation of sigma and not $pi$ bonds |      |
|                    | <b>B</b> is incorrect because the aromatic pi bonds are not formed from the overlap of d orbitals      |      |
|                    | <b>D</b> is incorrect because the aromatic pi bonds are not formed from the overlap of d orbitals      |      |

| Question<br>Number | Answer                                                                                                                          | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|------|
| 11                 |                                                                                                                                 | (1)  |
|                    | -N-(CH <sub>2</sub> ) <sub>6</sub> -N-C-(CH <sub>2</sub> ) <sub>8</sub> -C-                                                     |      |
|                    | The only correct answer is D ( H H )                                                                                            |      |
|                    | A is incorrect because the repeat unit is for a nylon made from an amine with ten-carbons and an eight-carbon dicarboxylic acid |      |
|                    | $m{B}$ is incorrect because the repeat unit is for a nylon made from a twelve-carbon dicarboxylic acid                          |      |
|                    | C is incorrect because the repeat unit is for a nylon made from a ten-carbon diamine and a six-carbon dicarboxylic acid         |      |

| Question<br>Number | Answer                                                                                                               |     |
|--------------------|----------------------------------------------------------------------------------------------------------------------|-----|
| 12                 | The only correct answer is B (hydrogen bonds)                                                                        | (1) |
|                    | $m{A}$ is incorrect because it is possible for covalent bonds to be involved in adsorption                           |     |
|                    | C is incorrect because it is possible for London forces be involved in adsorption                                    |     |
|                    | <b>D</b> is incorrect because it is possible for permanent dipole-induced dipole forces to be involved in adsorption |     |

| Question<br>Number | Answer                                                                                                                       |     |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| 13                 | The only correct answer is D ( $V_2O_5 + SO_2 \rightarrow V_2O_4 + SO_3$ then $V_2O_4 + \frac{1}{2}O_2 \rightarrow V_2O_5$ ) | (1) |  |  |
|                    | $m{A}$ is incorrect because the catalyst reacts first with sulfur dioxide followed by oxygen and $V_2O_6$ does not exist     |     |  |  |
|                    | <b>B</b> is incorrect because $V_2O$ is not the intermediate formed in this reaction                                         |     |  |  |
|                    | $C$ is incorrect because the catalyst reacts first with sulfur dioxide followed by oxygen and $VO_3$ does not exist          |     |  |  |

| Question<br>Number | Answer                                                                                                                                                                                                                                                          |     |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| 14                 | The only correct answer is D (  A is incorrect because there is an initial slow rate before speeding up  B is incorrect because there is an initial slow rate before speeding up  C is incorrect because the rate slows as the reactant concentration decreases | (1) |  |  |

## **Section B**

| Question<br>Number | Answer                                                                                                                                                                                         |     | Additional Guidance                                                                                                                                                                                                                              | Mark |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 15(a)              | <ul> <li>diagram of hydrogen bond including lone pair (of electrons)</li> <li>dipoles on N, H and O and linearity about the central H of the hydrogen bond, e.g. N: "H-O or O: "H-N</li> </ul> | (1) | Allow butyl group C <sub>4</sub> H <sub>9</sub> / R Allow dotted/dashed line without label in M1 Do not award M1 if the lone pair is not included in the hydrogen bond If multiple hydrogen bonds drawn then all have to be correct to score (2) | (2)  |

| Question<br>Number | Answer                                          |     | Additional Guidance                                                                                                                                                   | Mark |
|--------------------|-------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 15(b)              |                                                 |     | Example of calculation                                                                                                                                                | (2)  |
|                    | • calculation of moles of butylamine            | (1) | $n=(15 \times 10^{-3} \div 73) = 2.0548 \times 10^{-4} \text{ (mol)}$                                                                                                 |      |
|                    | • calculation of number of butylamine molecules | (1) | N= $(2.0548 \times 10^{-4} \times 6.02 \times 10^{23})$<br>N= $1.2370 \times 10^{20}$                                                                                 |      |
|                    |                                                 |     | Ignore SF except 1SF Correct answer without working scores (2)                                                                                                        |      |
|                    |                                                 |     | TE on incorrect molar mass value/ omission of x $10^{-3}$ / TE on incorrect number of moles Allow (1) N= 9.03 x $10^{21}$ due to (15 x $10^{-3}$ x 6.02 x $10^{23}$ ) |      |

| <b>Question Number</b> | Answer                                                                                        | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mark |
|------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 15(c)                  | <ul> <li>structure of N-butyl ethanamide (1)</li> <li>rest of equation correct (1)</li> </ul> | Example of equation $2 \stackrel{H}{-} \stackrel{H}{-$ | (2)  |
|                        |                                                                                               | HH H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|                        |                                                                                               | M2 dependent on M1  Allow (1) for non-displayed formulae of the organic molecules  Allow (1) for equation with propanoyl chloride instead of ethanoyl chloride or propylamine instead of butylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |

| <b>Question Number</b> | Answer                                                                                                                                                                                                                                  |     | Additional Guidance                                                                                                                                                                                                                                                                                     | Mark |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 15(d)                  | <ul> <li>An explanation that makes reference to the following points:</li> <li>the nitrogen (atom) has a lone pair or acts as a base by accepting a proton</li> <li>(butylamine is a stronger base) because there is greater</li> </ul> | (1) | Allow butylamine accepts protons more readily  Allow reference to NH <sub>2</sub> group for the nitrogen                                                                                                                                                                                                | (3)  |
|                        | electron density on the nitrogen (atom)                                                                                                                                                                                                 | (1) | Ignore references to electronegativity  Do not award the nitrogen is more negative                                                                                                                                                                                                                      |      |
|                        | as a result of the butyl/alkyl group releasing electron density (to the nitrogen atom)                                                                                                                                                  | (1) | Accept reference to the positive inductive effect of the alkyl group Allow reference to electron 'pushing' for releasing Allow reference to methyl group of butylamine being electron-releasing/donating  Ignore references to the positive charge being more distributed for stability with butylamine |      |

(Total for Question 15 = 9 marks)

| Question<br>Number | Answer                                                                                                                                                                      |                                               | Additional Guidance                                                                              | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|------|
| 16                 |                                                                                                                                                                             |                                               | Example of calculation:                                                                          | (6)  |
|                    | • (M1) calculation of moles of manganate(VII)                                                                                                                               | (1)                                           | $n(MnO_4^-) = (0.0125 \times 0.01620) = 2.025 \times 10^{-4}/0.0002025 \text{ (mol)}$            |      |
|                    | • (M2) calculation of moles of iron(II) from titre                                                                                                                          | (1)                                           | $n(Fe^{2+}) = (2.025 \times 10^{-4} \times 5) = 1.0125 \times 10^{-3} / 0.0010125 \text{ (mol)}$ |      |
|                    | • (M3) calculation of moles of iron(II) in flask                                                                                                                            | (1)                                           | $n(Fe^{2+}) = (1.0125 \times 10^{-3} \times 4=) 4.05 \times 10^{-3} / 0.00405 \text{ (mol)}$     |      |
|                    | Either • (M4) calculation of mass of iron in g                                                                                                                              | (1)                                           | $m(Fe^{2+}) = (4.05 \times 10^{-3} \times 55.8 = ) 0.22599 / 2.2599 \times 10^{-1} (g)$          |      |
|                    | (M5) calculation of mass of iron in mg in 25 cm <sup>3</sup>                                                                                                                | (1)                                           | $m(Fe^{2+}) = (0.22599 \text{ x } 1000 = ) 225.99 \text{ (mg)}$                                  |      |
|                    | • (M6) volume required for a 90 mg dose to 2/3 SF                                                                                                                           | (1)                                           | $V(Fe^{2+}) = (90 \div 225.99 \times 25 =) = 10 / 9.96 \text{ (cm}^3)$                           |      |
|                    | <ul> <li>• (M4) conversion of mass to mg</li> <li>• (M5) calculation of moles of iron in advised dose</li> <li>• (M6) volume required for a 90 mg dose to 2/3 SF</li> </ul> | <ul><li>(1)</li><li>(1)</li><li>(1)</li></ul> | $n(Fe^{2+}) = (0.090 \div 55.8 = ) 1.6129 \times 10^{-3} / 0.0016129 \text{ (mol)}$              |      |

(Total for Question 16 = 6 marks)

| <b>Question</b><br><b>Number</b> | A                                                                                                                                                                                              | nswer                                                                                                                                             | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mark |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| *17(a)                           | logically structured answer with reasoning.                                                                                                                                                    | e content and for how the answer is soning.  the marks should be awarded for  Number of marks awarded for indicative marking points  4  3  2  1 0 | Guidance on how the mark scheme should be applied.  The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning).  If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).  In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks 3 or 4 indicative points would get 1 reasoning mark 0, 1 or 2 indicative points would get zero reasoning marks | (6)  |
|                                  | Answer shows a coherent logic structure with linkages and fully sustained lines of reasoning demonstrated throughout  Answer is partially structured with some linkages and lines of reasoning | 1                                                                                                                                                 | If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s).  Comment: Look for the indicative marking points first, then consider the mark for the structure of the answer and sustained line of reasoning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |

| Answer has no linkages between points and is unstructured                                                                                       | Allow IPs to be credited for labelled diagram                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicative content                                                                                                                              | Allow CO for Co Allow the electrodes to be on either side                                                                                                                                  |
| <b>IP1</b> description/diagram of standard hydrogen electrode with H <sub>2</sub> (g) and Pt                                                    |                                                                                                                                                                                            |
| IP2 conditions of 1 atm and 1.0 mol dm <sup>-3</sup> HCl((aq)) and 298 K/25°C                                                                   | Allow H <sup>+</sup> for HCl                                                                                                                                                               |
| IP3 description of salt bridge using filter paper soaked in (saturated) KNO <sub>3</sub> (aq)                                                   | Allow use of gel/agar with KNO <sub>3</sub> Allow use of other soluble compounds e.g. KCl                                                                                                  |
| IP4 use of a 1.0 mol dm <sup>-3</sup> named cobalt salt solution e.g. Co(NO <sub>3</sub> ) <sub>2</sub> (aq)                                    | Accept any soluble cobalt salt Allow reference to solution without aqueous Do not award cobalt hydroxide                                                                                   |
| IP5 description of a cobalt electrode and (high resistance) voltmeter (with connecting wires) to complete the circuit                           | The circuit needs to be completed which requires a salt bridge but can just be a line for this IP  Do not award this IP if solutions not shown or salt bridge not dipping into solutions   |
| IP6 reference to how the data obtained in the experiment is used to determine the electrode potential of the cobalt(II)/cobalt electrode system | Allow voltmeter reading = standard electrode potential for cobalt Allow reference to calculating $E^{\bullet}_{cell}$                                                                      |
|                                                                                                                                                 | If IP3 and IP4 not awarded then allow one IP if the salt bridge is not described but KNO <sub>3</sub> mentioned and 1.0 mol dm <sup>-3</sup> Co <sup>2+</sup> referred to without the salt |
|                                                                                                                                                 | Ignore references to cathode and anode/<br>positive and negative electrodes even if incorrect                                                                                              |

| <b>Question Number</b> | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mark |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 17(b)                  | <ul> <li>An explanation that makes reference to the following points:</li> <li>(the oxidation of chloride to chlorine is) not (thermodynamically) feasible (under standard conditions) as  E<sup>e</sup><sub>cell</sub> = -0.03 (V) (but only marginally)</li> <li>(however) using concentrated acid shifts the chlorine electrode system equilibrium (to the left)  and  reduces the chlorine electrode potential / reaction feasible  or  (however) the concentrated acid shifts the dichromate electrode system to the right  and  increases the dichromate electrode potential / reaction feasible  or</li> </ul> | (1)        | Allow the chlorine electrode system is more electropositive than the dichromate so oxidation of chloride is not thermodynamically feasible  Allow just not feasible as $E^{\bullet}_{cell} = -0.03$ (V)  Two aspects required for M2:  1. Shift in equilibrium / reaction 2. Effect on the electrode potential / $E^{\bullet}_{cell}$ Do not award if M2 reasoning is given with a statement that the $E_{cell}$ becomes negative/not feasible  Do not award M2 if one line of reasoning is correct but the other incorrect (+1 -1) | (3)  |
|                        | shifts the overall equation to the right  and  the $E^{\Theta}_{cell}$ value positive/reaction feasible  • (so) producing toxic chlorine (gas)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1)<br>(1) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |

| Question<br>Number | Answer                    | Additional Guidance                                                                                                                                                                                                                                                                                                         | Mark |
|--------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 17(c)              | • reduction half-equation | Example of equation<br>$VO_2^+ + 2H^+ + e^{(-)} \rightarrow VO^{2+} + H_2O$<br>Allow use of $\rightleftharpoons$<br>Allow multiples<br>Ignore state symbols even if incorrect<br>Ignore species written above the arrow<br>Do not award if oxidation half-equation unless the reduction half-equation is clearly identified | (1)  |

| Question<br>Number | Answer                    | Additional Guidance                                                                     | Mark |
|--------------------|---------------------------|-----------------------------------------------------------------------------------------|------|
| 17(d)(i)           |                           | Example of equation                                                                     | (1)  |
|                    | • oxidation half-equation | $CH_3OH + H_2O \rightarrow 6H^+ + CO_2 + 6e^{(-)}$<br>Allow use of $\rightleftharpoons$ |      |
|                    |                           | Allow multiples Ignore state symbols even if incorrect                                  |      |
|                    |                           | Allow $CH_3OH + 7H_2O \rightarrow 6H_3O^+ + CO_2 + 6e^{(-)}$                            |      |

| Question<br>Number | Answer             | Additional Guidance                                                                                                                                                                                  | Mark |
|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 17(d)(ii)          |                    | Example of equation:                                                                                                                                                                                 | (1)  |
|                    | • overall equation | CH <sub>3</sub> OH + 1½O <sub>2</sub> → CO <sub>2</sub> + 2H <sub>2</sub> O<br>Allow use of ⇌<br>Allow multiples/decimals/fractions<br>Ignore state symbols even if incorrect<br>No TE from part (i) |      |

| Question<br>Number | Answer                           | Additional Guidance                                                                                      | Mark |
|--------------------|----------------------------------|----------------------------------------------------------------------------------------------------------|------|
| 17(d)(iii)         |                                  | Example of calculation:                                                                                  | (1)  |
|                    | • calculation of concentration X | c(X) = inverse ln (((1.20 – 1.23) ÷ 4.277 x $10^{-3}$ ))<br>= 8.9897 x $10^{-4}$ (mol dm <sup>-3</sup> ) |      |
|                    |                                  | Ignore SF except 1SF Do not award 9 x 10 <sup>-4</sup>                                                   |      |
|                    |                                  |                                                                                                          |      |
|                    |                                  | Ignore any units given with the numerical value                                                          |      |

(Total for Question 17 = 13 marks)

| <b>Question Number</b> | Answer                                                                                                                  |     | Additional Guidance                                                                                                                                                                                   | Mark |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 18(a)(i)               | An explanation that makes reference to the following points:  • splitting in energy of d sub-shell/ d orbitals by water | (1) | water/ligands and                                                                                                                                                                                     | (3)  |
|                        | ligands                                                                                                                 | (1) | split the energy of the d-subshell/d-orbitals Do not award d orbital (singular) Allow degenerate d orbitals split into non-degenerate d orbitals by water ligands                                     |      |
|                        | <ul> <li>absorption of light/photon/<br/>(electromagnetic) radiation/energy</li> <li>and</li> </ul>                     |     | (visible) light/photon/(electromagnetic) radiation/energy is absorbed and                                                                                                                             |      |
|                        | electronic transition                                                                                                   | (1) | promoting <b>electron</b> s from lower to higher energy Allow light etc causes d-d <b>electron</b> transitions Ignore colour absorbed Do not award reference to electron de-excitation                |      |
|                        | origin of observed colour of complex ion                                                                                | (1) | colour due to reflected/transmitted light Allow due to wavelengths/frequencies of light that are not absorbed Allow complementary colour observed Do not award reference to emission/release of light |      |

| Question<br>Number | Answer                                                                                                                                                                                                         |     | Additional Guidance                                                                                                                                                                                                                                                                                                    | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 18(a)(ii)          | An answer that makes reference to two of the following points:  • the oxidation number of the iron is different in the two complexes                                                                           | (1) | Allow reference to the charge on the iron ion is different but ignore just stating formulae Allow reference to the number of d orbital electrons is different Ignore reference to just number of electrons unless qualified                                                                                            | (2)  |
|                    | <ul> <li>(which results in a) different energy gap (due to different splitting of d orbitals)</li> <li>(and so) different wavelength/frequency of light required/ absorbed (to promote electron(s))</li> </ul> | (1) | Ignore reference to splitting of a singular d orbital Do not award an energy gap between 4s and 3d  Ignore references to detailed explanations of colours even if incorrect as this is addressed in (i) Ignore reference to energy Ignore just reflection of colour  Penalise once only reference to different ligands |      |

| Question<br>Number | Answer                                                                                                                                                                          |            | Additional Guidance                                                                                                                                                                                                                                                                       | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 18(b)(i)           | <ul> <li>eight electrons around the S and the N using appropriate symbols with the triangle on the S</li> <li>eight electrons around the C using appropriate symbols</li> </ul> | (1)<br>(1) | Examples of diagram:  **  S  **  C  **  Allow one mark for a diagram with all dots/ all crosses/all triangles  Accept the pairs to be vertical Allow electrons not in pairs  Allow(2) for the alternative shown with two dative covalent bonds  -  **  C  **  **  C  **  N  **  **  **  * | (2)  |

| Question<br>Number | Answer                                                                                                                  | Additional Guidance                                                                                                                                                          | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 18(b)(ii)          | An answer that makes reference to the following points:                                                                 |                                                                                                                                                                              | (3)  |
|                    | • (formula) $[Fe(H_2O)_5SCN]^{2+}$ (1)                                                                                  | Allow missing square brackets Ignore any drawing if formula given, even if incorrect                                                                                         |      |
|                    | (justification)  • calculation of moles of Fe <sup>3+</sup> and calculation of moles of SCN <sup>-</sup> (1)            | $n(Fe^{3+}) = 0.0128 \times 0.05 = 6.4 \times 10^{-4} / 0.00064 \text{ (mol)}$<br>$n(SCN^{-}) = 0.008 \times 0.08 = 6.4 \times 10^{-4} / 0.00064 \text{ (mol)}$<br>Ignore SF |      |
|                    | • 1:1 ratio (indicates one thiocyanate ion in octahedral complex which has six ligands so gives 5 water molecules)  (1) | Allow evidence of division to get a value of 1                                                                                                                               |      |

| <b>Question Number</b> | Answer                                                               | Additional Guidance                                                                                                                                           | Mark |
|------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 18(c)(i)               | • all points plotted accurately and line of best fit including (0,0) | Example of graph  1.4 -  1.2 -  1.0 -  Absorbance  0.8 -  0.6 -  0.4 -  0.0 0.1 0.2 0.3 0.4 0.5  Concentration of CuSo <sub>4</sub> (ne) Inol dm <sup>3</sup> | (3)  |

| Question<br>Number | Answer                                                             | Additional Guidance                                                                                                                                                                                                                             | Mark |
|--------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 18(c)(ii)          | • use of graph to determine concentration from 0.72 absorbance (1) | Example of graph  14 -  12 -  10 -  Absorbure  08 -  (0.72) -  0.6 -  1 -  0.7 -  1 -  0.7 -  Allow answers in the range from 0.255 - 0.265 (mol dm <sup>-3</sup> )  Do not award M1 if working absent from graph                               | (2)  |
|                    | • calculation of original concentration (1)                        | Scaling up from diluted concentration<br>=0.26 x (250 ÷ 50) = 1.3 (mol dm <sup>-3</sup> )<br>Allow answers in the range 1.275 – 1.325 (mol dm <sup>-3</sup> ) from 0.255 – 0.265<br>Ignore SF except 1SF<br>TE from incorrect graphical reading |      |

| Question<br>Number | Answer                                                                                                            | Additional Guidance                                                  | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------|
| 18(c)(iii)         | An answer that makes reference to the following point                                                             |                                                                      | (1)  |
|                    | • graph may not be linear above 0.50 mol dm <sup>-3</sup> / unknown extrapolation above 0.50 mol dm <sup>-3</sup> | Accept only values between 0 and 0.50 mol dm <sup>-3</sup> are known |      |
|                    | -                                                                                                                 | Allow references to the limited solubility of copper(II)             |      |
|                    |                                                                                                                   | sulfate/solution may be saturated                                    |      |
|                    |                                                                                                                   | Allow absorbance is on a log scale and so absorbance above           |      |
|                    |                                                                                                                   | about 2 becomes hard to measure                                      |      |

| Question<br>Number | Answer                                                                            | Additional Guidance                                                                                                                                                                                                       | Mark |
|--------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 18(d)(i)           | An answer that makes reference to the following point                             |                                                                                                                                                                                                                           | (1)  |
|                    | increase in the number of moles     and     so a positive entropy (of the system) | Accept 4 moles to 7 moles for increase in the number of moles Allow particles for moles Allow positive total entropy/greater disorder Allow entropy increases  Do not award references to endothermic/exothermic/enthalpy |      |

| Question<br>Number | Answer                                                                           |     | Additional Guidance                                                                                                            | Mark |
|--------------------|----------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------|------|
| 18(d)(ii)          | An explanation that makes reference to two of the following points:              |     | Diagrams can give evidence for marking points                                                                                  | (2)  |
|                    | • each nitrogen (atom) has one lone pair (of electrons)                          | (1) | Allow each ethane-1,2-diamine has two lone pairs (of electrons)                                                                |      |
|                    | <ul> <li>so both form dative covalent bonds/two dative bonds can form</li> </ul> | (1) | Accept coordinate bonds for dative covalent bonds Do not award if carbon/CH <sub>2</sub> group forms dative bonds              |      |
|                    | • (and) the lone pairs of electrons being far enough apart                       | (1) | Allow reference to a four atom chain is the minimum (length) needed for a stable bidentate attachment to the central metal ion |      |

| Question<br>Number | Answer                                                                                                                                                                                |                                   | Additional Guidance                                                                           | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------|------|
| 18(d)(iii)         | An explanation that makes reference to the following points:                                                                                                                          |                                   |                                                                                               | (3)  |
|                    | <ul> <li>in ethane-1,2-diamine the angles are 107(°) because there are three bond pairs and one lone pair</li> <li>(because) in the complex ion the bond angle is 109.5(°)</li> </ul> | <ul><li>(1)</li><li>(1)</li></ul> | Standalone mark                                                                               |      |
|                    | • (the lone pair becomes a bonded pair with reduced repulsion and) therefore there are four pairs of bonded electrons around the nitrogen in the complex ion                          | (1)                               | If no other mark awarded then award (1) for bond angle increases because lone pair now bonded |      |

(Total for Question 18 = 22 marks)

## **Section C**

| Question<br>Number | Answer                            | Additional Guidance                                   | Mark |
|--------------------|-----------------------------------|-------------------------------------------------------|------|
| 19(a)              | • C <sub>5</sub> H <sub>6</sub> O | Accept elements in any order Ignore $C_{10}H_{12}O_2$ | (1)  |

| Question<br>Number | Answer                                                                   |     | Additional Guidance                                                                                                                                                                                                                             | Mark            |
|--------------------|--------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 19(b)(i)           | An answer that makes reference to the following points:                  |     |                                                                                                                                                                                                                                                 | (5)             |
|                    | • equation to show formation of electrophile using AlCl <sub>3</sub>     | (1) | Allow other halogen carriers such as AlBr <sub>3</sub> FeBr <sub>3</sub> / Fe with excess Br <sub>2</sub>                                                                                                                                       |                 |
|                    | • curly arrow from anywhere on the central ring to positive 'end' carbon | (1) | Allow curly arrow from anywhere <b>within</b> the hexagon No TE on incorrect neutral species from equation                                                                                                                                      |                 |
|                    | structure of intermediate                                                | (1) | Horseshoe facing the tetrahedral carbon and covering at least three carbon atoms. Some part of the positive charge in the horseshoe  Do not award dotted lines unless clearly part of a 3D structure  Do not award incorrect connectivity of OH |                 |
|                    | • curly arrow from C-H bond to reform the ring                           | (1) |                                                                                                                                                                                                                                                 |                 |
|                    | <ul> <li>equation showing regeneration of catalyst</li> </ul>            | (1) | Regeneration can be shown by curly arrow to the H being lost from the ring                                                                                                                                                                      |                 |
| Example of         | mechanism for 19(b)(i)  + AICI <sub>3</sub> + AICI <sub>4</sub>          |     | Allow displayed/semi-displayed formulae, e.g.                                                                                                                                                                                                   | H O<br>    <br> |
| но                 | HO HO HO                                                                 | +   | Do not award bond to + of electrophile, e.g. +                                                                                                                                                                                                  |                 |
|                    | $H^+$ + $AICI_4^ \longrightarrow$ $HCI$ + $AICI_3$                       |     |                                                                                                                                                                                                                                                 |                 |

| Question<br>Number | Answer                                                                                                                            | Additional Guidance                                                                                                                                                                                                          | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 19(b)(ii)          | An answer that makes reference to the following point  • substitution can occur at other positions (of the benzene/aromatic ring) | Allow drawn structures of substitution at other positions of benzene ring Allow multiple/further substitutions Allow other isomers are made  Ignore just other substances/side products  Do not allow references to addition | (1)  |

| <b>Question Number</b> | Answer                                                                                                                                                                                             |     | Additional Guidance                                                                                                                                                           | Mark |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 19(c)                  | An answer that makes reference to the following points:                                                                                                                                            |     | Ignore references to temperature throughout Ignore connectivity of the OH but penalise the positions of the side chains once only in M2 or M6                                 | (7)  |
|                        | (M1) oxidation with K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> / Na <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> with H <sub>2</sub> SO <sub>4</sub> and     a limited amount of oxidising agent | (1) | Allow Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> /H <sup>+</sup> here and in M7 Penalise use of HCl once only Allow distillation Do not award reference to reflux           |      |
|                        | (M2) structure of aldehyde intermediate                                                                                                                                                            | (1) |                                                                                                                                                                               |      |
|                        | • (M3) reaction of bromomethane with magnesium in (dry) ether                                                                                                                                      | (1) | Allow use of chloromethane/ iodomethane                                                                                                                                       |      |
|                        | • (M4) structure of Grignard reagent                                                                                                                                                               | (1) | CH <sub>3</sub> MgBr                                                                                                                                                          |      |
|                        | (M5) reaction of aldehyde intermediate with Grignard reagent and then hydrolysis using dilute acid                                                                                                 | (1) | Allow any dilute acid / H <sup>+</sup> which can be shown above an arrow Ignore any structure drawn before hydrolysis even if incorrect Do not award use of concentrated acid |      |
|                        | • (M6) structure of alcohol intermediate                                                                                                                                                           | (1) | но                                                                                                                                                                            |      |
|                        | • (M7) oxidation with K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> / Na <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> with H <sub>2</sub> SO <sub>4</sub> (reflux)                                  | (1) | Allow use of KMnO <sub>4</sub> with acid or base                                                                                                                              |      |

| <b>Question Number</b> | Answer                                                | Additional Guidance                                                                                                                                                                                                                                                           | Mark |
|------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 19(d)                  | An answer that makes reference to the following point |                                                                                                                                                                                                                                                                               | (1)  |
|                        | avoid reduction of the ketone (functional group)      | Allow targets <b>only</b> the alkene/C=C group Allow avoid benzene ring/carbonyl reduction Allow benzene ring/carbonyl may be reduced Ignore vague references to other products Do not award if incorrect products stated Do not award incorrect identification e.g. aldehyde |      |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                      |                   | Additional Guidance                                                                                                                                                                                                                    | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| _                  | An answer that makes reference to the following points:  (similarity)  • both are the E—stereoisomer (of the straight chain C=C)  (difference)  • only the α-ionone exhibits optical isomerism  • labelling of the chiral carbon on α-ionone and the labelling of carbon-carbon double bond | (1)<br>(1)<br>(1) | Allow trans for <i>E</i> Allow both can form geometric/ <i>E</i> – <i>Z</i> isomers Do not award if only the ring C=C bonds is indicated  Accept has optical isomers or enantiomers Allow has a chiral carbon/centre/asymmetric carbon | (3)  |
|                    |                                                                                                                                                                                                                                                                                             |                   | Do not award if the alicyclic ring C=C is circled                                                                                                                                                                                      |      |

| Question<br>Number | Answer                                                | Additional Guidance                                                                      | Mark |
|--------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------|------|
| 19(e)(ii)          | An answer that makes reference to the following point |                                                                                          | (1)  |
|                    | asterisk on the quartet carbon                        | Allow any suitable label for the asterisk Do not award if more than one carbon indicated |      |

| Question<br>Number | Answer                                                                         | Additional Guidance                                                                                                                                                                                      | Mark |
|--------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 19(e)(iii)         | 12/twelve     and     because the two methyl group carbon atoms are equivalent | Allow because there are 12 carbon environments/ two carbon (atoms) have the same environment  Allow annotations on the structure such as both of the methyl groups given the same number or both circled | (1)  |

(Total for Question 19 = 20 marks)